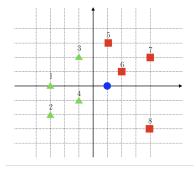
Problem 1. (kNN) 4 points

Classify the new point (circle) using a kNN classifier. Choose the closest k=3 neighbors among the data points 1 to 8 and their class label (\triangle or \square) for different distance metrics.



	Closest $k = 3$ points	Label
L1 (Manhattan) distance	1, 2, 3, 4, 5, 6, 7, 8	\Box , \triangle
L2 (Euclidean) distance	1, 2, 3, 4, 5, 6, 7, 8	\Box , \triangle

Solution:

	Closest $k = 3$ points	Label
L1 (Manhattan) distance	4,5,6	
L2 (Euclidean) distance	3,4,6	Δ

Problem 2. (Naive Bayes) 3 points

We aim to predict the possibility of success based on data point $x = (x_1, ..., x_d)$ with features $x_i \in \mathbb{R}, i = 1, ..., d$. Success corresponds to class 1 and failure corresponds to class 0. Let P(1) denote the probability of success determined based on a training set.

1. (2 points) Suppose you are given a test point $x^t = (x_1^t, \dots, x_d^t)$ and $f_{x_i^t|1}$ is the conditional probability density of feature x_i given success. Give the expression of the probability that the test point is a success, by filling in the blanks below and using feature independence with the Naive Bayes assumption.

Solution:

$$P(1 \mid x^{t}) = \frac{f_{x^{t}|1}(x^{t})P(1)}{f_{x^{t}}(x^{t})}$$

$$\propto \prod_{i=1}^{d} f_{x_{i}^{t}|1}(x_{i}^{t})P(1).$$
(0.1)

Comment: The problem statement contains a typo, specifically with $f_{x^t|1}$ in the original version. Consequently, students write (0.1) will still receive full points.

2. (1 points) Suppose the number of features is d = 1 and the test data point is $x^t = 4$. Assume the following is known to you: $f_{x^t|1}(4) = 0.17$, $f_{x^t|0}(4) = 0.24$ and P(1) = 0.6. Using the Naive Bayes approach to determine whether the test point $x^t = 4$ is classified as a success or not.

Solution:

i Compute

$$P(1 \mid x^{t}) = \frac{f_{x^{t}\mid 1}(x^{t})P(1)}{f_{x^{t}}(x^{t})}$$

$$\propto f_{x_{1}^{t}\mid 1}(x_{1}^{t})P(1)$$

$$\propto f_{4\mid 1}(x_{1}^{t}) * 0.6$$

$$\sim 0.102$$

ii Compute

$$P(0 \mid x^{t}) = \frac{f_{x^{t}\mid 0}(x^{t})P(0)}{f_{x^{t}}(x^{t})}$$

$$\propto f_{x_{1}^{t}\mid 0}(x_{1}^{t})P(0)$$

$$\propto f_{4\mid 0}(x_{1}^{t}) * 0.4$$

$$\sim 0.096$$

iii Since $P(1 \mid x^t) > P(0 \mid x^t)$ the test point is classified as a success.

Problem 3. (Label axes (i.e. x_1, x_2)) 3 points

Consider the following classification problem with data points $x^i \in \mathbb{R}^2$ and corresponding labels $y^i \in \{0 \text{ (square)}, 1 \text{ (triangle)}\}$. The training data is depicted in Figure 1 below. Your friend suggests calculating \hat{z}^i as $\hat{z}^i := (x_1^i)^2 + (x_2^i)^2 - R^2$, where R represents the radius of the circle in the graph. Given \hat{z}^i , you assign x^i to label 1 if $\hat{z}^i \geq 0$ and label 0 if $\hat{z}^i < 0$.

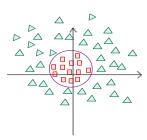


Figure 1: Classification problem with training data

1. (3 points) Based on your friend's suggestion, what is the feature function $\Phi(x_1^i, x_2^i) : \mathbb{R}^2 \to \mathbb{R}$? What are the values of the weight $w \in \mathbb{R}$ and the bias $b \in \mathbb{R}$?

Solution: Feature function is $\Phi(x_1^i, x_2^i) = (x_1^i)^2 + (x_2^i)^2$, and w = 1 and $b = -R^2$.